Sommes de s.e.v

Exercice 1225. Soit $E = \R[X]$ et $A \in \R[X]\backslash \{0\}$. \\ On note $n = deg(A)$. \\ On pose $F = \{P \in \R[X] \; / \;A \mid P \}$. \\ Montrer que $F + \R_{n-1}[X] = E$.
Exercice 1226. Soit $E = \R^n$ est un s.e.v de $E$. \\ On pose $H = \{(x_1,\hdots,x_n) \in \R^n \; / \; x_1+\hdots+x_n = 0 \}$. \\ On note $e = (1,\hdots,1) \in E$. \\ Soit $D = vect(e)$. \\ Montrer que $H+D=E$.
Exercice 1227. On pose $F = \{P \in \R_3[X], P'(1)=0\}$ et $G = vect(X^3+2)$. \\ On admet que $F$ est un sous-espace vectoriel de $\R_3[X]$. \\ Montrer que $F$ et $G$ sont en somme directe.
Exercice 1228. Soient\\ $F = \{ P \in \R_3[X] \; | \; P(0) = P(1) = P(2) = 0 \}$, \quad $G = \{ P \in \R_3[X] \; | \; P(1) = P(2) = P(3) = 0 \}$, \quad $H = \{ P \in \R_3[X] \; | \; P(X) = P(-X) \}$.\\ Montrer que $\R_3[X] = F \oplus G \oplus H$.
Exercice 1229. Soit $A \in \R[X]$ un polynôme non constant et $F = \{ P \in \R[X] \; | \; A | P \}$.\\ Montrer que $F$ est un sous-espace vectoriel de $\R[X]$ et trouver un supplémentaire de $F$.